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We discuss the randomly driven system dx/dt= -W(x)+f( t ) ,  where f(t) is a 
Gaussian random function or stirring force with ( f ( t ) f ( t ' ) )=26( t - t ' ) ,  and 
W(x) is of the form gx 1+2~. The parameter 6 is a measure of the nonlinearity 
of the equation. We show how to obtain the correlation functions (x(t) x(t')... 
x(t(n)))f as a power series in 6. We obtain three terms in the 6 expansion and 
show how to use Pad+ approximants to analytically continue the answer in the 
variable ft. By using scaling relations, we show how to get a uniform approxima- 
tion to the equal-time correlation functions valid for all g and ft. 

KEY WORDS: Langevin equation; delta expansion; nonlinear; perturbation 
expansion; scaling relations. 

1. I N T R O D U C T I O N  

Recen t ly  a n e w  p e r t u r b a t i v e  t echn ique ,  the  6 expans ion ,  was  p r o p o s e d  to 

solve  n o n l i n e a r  p r o b l e m s  in p h y s i c s J  1 3) T h e  t e c h n i q u e  invo lves  rep lac ing ,  

in a d i f ferent ia l  e q u a t i o n ,  n o n l i n e a r  t e rms  such as x 3 by x 1+26 and  

e x p a n d i n g  this t e r m  in p o w e r s  of  6: 

x 1 + 2 6 = x  ~ ~ n ( l n x 2 ) n  (1.1) 
, = 0  n! 

W e  are  thus  ab le  to o b t a i n  a so lu t i on  to the  dif ferent ia l  e q u a t i o n  as a 

p o w e r  series in 6. T h e  p a r a m e t e r  6 is a m e a s u r e  of  the  n o n l i n e a r i t y  of  the 
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theory. When 6 = 0  the theory is linear and typically can be solved in 
closed form. As 6 increases from zero, the nonlinearity turns on smoothly. 
Typically the 6 series has a finite radius of convergence. Since we are 
interested in 6 = l, 2, etc., we need a way of analytically continuing the 
series obtained to large 6. To do this, we will employ Pad~ approximants. (41 
The first nontrivial Pad6 approximant, the [1, 1] Pad6, requires 
calculating terms up to order 6 2 in this expansion. We will also utilize a 
scaling argument to obtain the correct functional dependence of the 
correlation functions on the coupling constant g for all values of 6. 

In this paper we will be studying the one-dimensional Langevin 
equation 

dx 
dt = W(x)+f(t) ,  W(x) = gx I +26 (1.2) 

[For this equation to be well defined for arbitrary 6 and negative x we 
interpret W as follows: W(x) = gx(x2)~.] 

The stirring force f( t)  is a random function described by Gaussian 
statistics, i.e., it is described by a joint probability functional 

with 

Ell, ] P [ f ] = N e x p  - ~  dtdt ' f ( t )  S(t , t ' ) f( t ' )  
0 

Choosing white noise, 

f P[ f ]  ~ f  = 1 

S ~(t, t') = 2 6 ( t -  t') 

we have that 

<f( t)  f(t ') > = f ~ f  P[ f ]  f(t)  f(t ')  = S '(t, t') 26(t t') 

(1.3) 

(1.4) 

where ~ f  denotes functional integration. 
There are two ways to determine the correlations in x(t) resulting 

from the statistics of the forcing term. One way is to solve directly for x(t) 
in terms of f(t)  and then use (1.4). The other is to make a change of 
variables in the functional integral (1.4) to obtain a path integral in the 
variable x(t). One has (5"6) 

(x( t )x( t ' ) )1= f ~ f  P[ f ]  x(t)x(t ')= f ~x(t) P[f(x)]  x(t)x(t ')det 66~fx 

(1.5) 
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Because of the retarded boundary conditions, one has that (5) 

det 6f  =exp - 2  0 3x(t)  dt (1.6) 

Thus, using (1.2) and integrating by parts, we obtain the following 
function : functional integral for the two-point correlation (6) 

( x ( t )  x( t ' ) ) / ,=  f [~x( t ) ]  x(t)  x( t ' )  exp{ - S [ x ]  } (1.7) 

where 

Six]  = (s~)~ +~ - ~  w '  dt (1.8) 
o 

We recognize this functional integral as the Euclidean path integral for a 
supersymmetric quantum mechanical system (7) when t o ~ -oe .  Thus when 
t, t' =~ oe with I t -  t'] held fixed the correlation function (1.7) becomes that 
for the related quantum mechanical system. 

The equal-time correlation functions for this system at large times, 
t >> to, can be obtained directly from the time-independent solution of the 
related Fokker-Planck equation. (8) If we define 

P(z) = (,$(~- x(t)) ) i 

then we can show that P obeys the following equation: 

a~- (~) = ~  [w(~) P(z)] +~-~z ~ (z) 

and that in the steady state 

and 

(1.9) 

(1.1o) 

We will use the fact that the equal-time correlation functions are 
exactly determined from (1.12) to make a detailed numerical study of the 
accuracy of the 5 expansion. 

<x' )  = ~oo dx x'P(x) 
~'~ dx P(x) (1.12) 

"x'= exp[ ; x  111, 
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2. 6 EXPANSION FOR THE LANGEVIN EQUATION 

For W(x)= gx 1+26, the Langevin equation is 

dx 
--~ + gx 1 + 2~ = f ( t )  (2.1a) 

The 6 expansion of this equation is 

dx 6n(ln x2)" 
--~ + gx ~ n! 

n = 0  
f ( t )  (2.1b) 

To solve this for x(t) in a 6 expansion, we assume that x(t) can be written 
a s  

X = X 0 + 6 X  1 "t- ~ 2 X  2 -t- " ' "  (2.2) 

Inserting (2.2) in (2.1b), we obtain a sequence of linear equations: 

d x  o 

dt + gx~ = f (2.3a) 

d x  1 

d--t- + gxl = -gxo  In x~ (2.3b) 

dx2 2 1 gxo(ln X02) 2 (2.3c) d-T + gx2 = -2gx l  - gxl in x o - 

and so on. [Notice that if W(x) contains a linear term corresponding to a 
nonzero mass in the quantum mechanics problem, W(x)=  gxl+26+mx, 
these equations and thus the calculation that follows are modified only 
trivially. Namely, on the left-hand side of Eq. (2.3) each term gxi is 
replaced by ( m+  g)x i  and the right-hand sides are unaltered.] We will 
impose retarded boundary conditions on the Langevin equations: 

X(to) = 0 (2.4) 

where to is the time at which the source f ( t )  first turns on. Thus x(t) is 
quiescent before the source term begins to operate. With this choice we 
can easily integrate the first-order differential equations (2.3) using an 
integrating factor to obtain: 

Xo(t) = e-gt f t  dy egYf(y) (2.5a) 
t O 
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xl( t) = - g e  -g' " | '  dy egYxo(y ) In xZ(y) (2.5b) 
~ t  0 

x2(t) = - g e  -g' ~' dy egY{ 2xl(y)  + xl (y)  In xZ(y) 
t O 

+ �89 x 2 ( y ) ]  2 } (2.5C) 

We see from the structure of the first three terms that the right-hand side 
of the equation for x ,  depends only on the lower-order results and thus in 
principle one can calculate all the xn by iteration. 

The next step in the calculation is to determine the stochastic average 
of a particular correlation function over the white noise. In this paper we 
focus on the two-point correlation function to order a 2, 

G2(o', ~ )=  ( x ( o ' ) x ( r ) )  

= ( [X0(O" ) -[- 6X1(0" ) -It- 62X2(0 ") "-[- . . - ]  

x [Xo(~) + 6x,(~) + 62xd~) + .-.] ) 

= (Xo(O') Xo(~) ) + 6[ (x0(~) xl(~))  + (x , (~)  Xo(O) ] 

+ 62[(x0(~) x2(~)) + (x2(~) Xo(~) > + (Xl(O-) x1(~))3 

+ ... (2.6) 

This is the minimal calculation needed to perform analytic continuation in 
6 via diagonal Pad6 approximants. The calculation of the first two terms 
of this series (up to order 6) was given in a previous paper, r but we will 
repeat that calculation here for completeness. For  simplicity we will choose 
to = 0. Since we are only interested in what happens at large ~ and a with 
T =  [r -err  held fixed, this choice of t o is only a convenience. 

In order to perform the stochastic averages over the white noise, one 
needs a way of interpreting ln(x2)" in Eqs. (2.1) and (2.3). One strategy is, 
for a given order of 6, to replace the logarithm in Eq. (2.1b) by a set of 
polynomial interactions that give the same answer to the given order in 6. 
To order 62, Eq. (2.lb) is equivalent to 

dx --~ + g(6 + 62) x 2~ +1 + g ( _  6 + 6 2) x 23 +1 = f (2.7) 

in the sense that one obtains, instead of (2.3a), (2.3b), and (2.3c), 

20 + gXo = f (2.8a) 

21 + gXl = _gx2ff+ 1+ gX2o3+1 (2.8b) 

= 2~ 23 22+gx2 - g x o ~ + * - g X o 3 + l - ( 2 c ~ + l ) g x l x o  + ( 2 f i + l ) g X l X o  
(2.8c) 



400 Bender et al. 

If we solve these equations and apply the operator 

D = ~  ~-~- + ~  ~5~2+ (2.9) 

and set c~ =/~ = 0, we reproduce Eqs. (2.3a), (2.3b), and (2.3c). This method 
is used in refs. 1 and 2. Alternatively, one can just use the identity 

(lnx2) n= ~ ~=o (2.10) 

to replace the logarithms by polynomial vertices. Both methods give the 
same result. In this paper we will use the latter method. 

2.1. Zeroth-Order  Calculation 

Using (1.4) and (2.5a), we have 

( X o ( Z ) X o ( a ) ) = e  g("+~) dt 

e - g T  e -g( .c  + a) 

g g 

ds e g(t + ,,I ( f ( t )  f ( s )  ) 

(2.11) 

At large z, a we thus obtain the equilibrated result to zeroth order in 6, 

C - - g T  

G~q(o -, "c) = (Xo('C) X0(O))eq -- (2.12) 
g 

where the subscript "eq" denotes the limit z, a ~ oc with T =  Iz-61 held 
fixed. 

2.2. First-Order Calculation 

To calculate the contribution to the two-point correlation function to 
first order in 6, we need to evaluate the two correlation functions 
(Xo(a)  x l ( z ) )  and (xl(~) Xo(Z)): 

<XO(O" ) XI (T)~  = - g e  -gl~+~) dt ds eg(t + s) ( f ( s )  Xo( t ) ln[-xZ(t)] ) 

(2.13) 
In order to use (1.4), we rewrite the logarithm using 

dx~ = l n  x 
do{ 0~=0 

(2.14) 
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Thus we obtain 

To evaluate the expectation value on the right-hand side of (2.15), notice 
that, because of the Gaussian statistics o f f ,  from the 2c~ + 1 factors f(zi) 
and the one factor f ( s )  one can make (2c~ + 1)!! different products of pairs 
of sources. Each leads to the same product of two integrals to be per- 
formed. After one of the f(zi) is paired with f (s)  [there are (2c~ + 1) ways 
to do this], the remaining 2c~ f(zi) can form c~ pairs o f f (z i )  in (2c t -1 ) ! !  
ways. This is represented by the diagram in Fig. 1. We thus have 

f (s)  dz, egZf(z,) = (2~ + 1)!! Ii(t , s)[I2(t)] ~ (2.16) 
i = I  

where 

Ii(t, s)= dz eg z ( f ( s ) f ( z ) )  = 2 0 ( t - s )  e ~s (2.17) 

and 

~ f~ e 2g'- 1 (2.18) I2( t )= dz dyeg(~+Y)( f (z ) f (y) )  g 

/ 
f(s) 

S ," 

2 c~+1 factors f( z i) 

o~loops (12) 

Fig. 1. Graphical representation of (2.16). 
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We obtain 

(Xo(a)xl(z)) = -2ge -g(~ (20{+ 1)[[ dt jo dse gu+') 

x e -(2~+ llg'o(t - s) e g" (e2g'- l f f  1 g~ ~= o (2.19) 

Since we are only interested in the derivative at 0{ = 0, we can rewrite 

e - 2 ~ g t ( e 2 g t - -  1) = -- 1 - o~e-2gt-{  - 0(0{ 2) (2.20) 

We also notice that the term proportional to 0{ in (2.20), when integrated 
over t, will be exponentially suppressed in the equilibrated regime. Thus, 

d 
(X0(O") X l ( r ) > e q  = -2ge g(a+-c)~ 

xI(20{+l)" fs dt f f  dse2gsO(t-~ s!l ,=o 

= - ( 2 g )  l e - g l .  ~ l [ l + 2 g O ( z _ a )  l z _ a l ]  

d ((20{ + 1)'!) 
x ~  g~ ~ =o (2.21) 

Using 

(20{ + 1)!! = 2 ~ F(0{ + 3/2) (2.22) 
v(3/2) 

and the Taylor expansion of the F function for small 0{ 

we obtain 

and 

r(c + 0{) = r(c)E1 + + 0(0{2)3 

d (.(20{~1)!!) = L  (2.23) 
d~  ~ = 0  

(Xo(O") XI(Z')  ) eq  - -  
L 

- - - - e  -gl~ ~111 +2gO(z -a ) I r -<3  
2g 

where L = ~b(3/2) + ln(2/g). So 

L e -gl~ 1 ]'c ol) (Xo(O") X l ( T )  -~- Xl(O" ) X o ( ' [ ) ) e q  = - -  __ ( "~ g - -  
g 

(2.24) 
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To order 5 we find ~ 

G~q(6, z) = e-gr 1 - 5L(1 + gT) + ... 
g 

403 

(2.25) 

2.3. S e c o n d - O r d e r  Ca lcu la t ion  

At order 52 we need to calculate both (x~(a)x~(~)) and the sym- 
metrized (Xo(a)x2(z)) in the equilibrated regime. First, consider 

( x l ( a )  x l ( r ) )  = g2e-g(~+~' fo dt Io dsegU+S)(Xo(S) In x~(s)Xo(t ) in x2(t)) 

=O~OBgee -g(~+z) dt dse 2g(~t+~s) 

~2:~+ 1 dzi] X\i~=l [fO t~gzf(Zi) 
x ]-[ eg'~(yj) dyj (2.26) 

j = l  ~ = / 3 = 0  

In the expectation value on the right-hand side of (2.26) there are 
2c~ + 1 factors f(zi) and 2fl + 1 factors f(yi) corresponding to the lines in 
Fig. 2a. We denote by Sk(~, fi) the Gaussian-statistics combinatoric factor 
corresponding to the contractions of the sources depicted in Fig. 2b, where 
2k+  1 factors f(yj) pair with 2k + 1 factors f(zi) and the remaining f(z,) 

(a) 

z 2 a + l  Y 2[?, +1 

2 k+l lines 

~ -  k loops 13 - k loops 

Fig. 2. Graphical representation of (2.27). 

822/64/1-2-26 
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and f (y j )  contract  in pairs among themselves. We can therefore rewrite the 
expectation value using the following shorthand:  

i = 1  A j = l  

= ~ S~(ct,/3)[I2(t)]/~--k[i3(s,t)]2k+l [i2(s)]C, k (2.27) 
k = 0  

where 

Sk(C~, /3) = \ 2 k  + l J k 2 k  + . . . .  

o r  

2 ~ + ~ 2k r ( 2  + 2~) r ( 2  + 2/3) F(~ -- k + 1/2) F(fl - k + 1/2) 
Sk(~, /3) = F2(1/2) F(Zk + 2) F(2~ - 2k + 1) F(2/3 - 2k + 1) 

I3(s, t) = e gz dz e gy dy ( f ( z )  f ( y )  ) 

e 2gt " I e 2 g s -  1 
= O ( s - t )  + 6 ) ( t - s ) - -  (2.28) 

g g 

and 12(0 is given by (2.18). 
Since we are only interested in the equilibrated regime, we can neglect, 

in both  I2 and 13, the 1 in compar ison with the exponential.  Performing the 
integrals, we find 

( X l ( O ' ) X l ( ~ ' ) ) e q = ~ G ~ f l  - -  ~ Fk( la - -~ l )  Sk(~,/3) (2.29) 
k=O g~+~+l ~=/~=0 

where 
2k + (1 - e 2kg I~+~b) 

Fk--  e g1~ el (2.30) 
4k(k + 1) 

Letting Rk = O~OaSk(O~,/3)/g~+~+ l l~=~=o, we find that, for k = 0, 

R o = - - ;  L = 0  + l n  (2.31) 
g 

and, for k/> 1, 

R k - - m  
( ~ )  f ( k )  F(3/2) B(k, 3/2) where B k, = (2.32) 

gk ' f ( k  + 3/2) 
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Thus, 

L 2 
( X l ( O )  X l ( T ) ) e q  = ~gg e - g  ]o- -z-l{ 1 -~- g Io - -  ~l} 

( ~) 2k+(1-e 2kgl~ ~r) 
+e gl~, el B k, 4gkZ(k+l) 

k = l  
(2.33) 

We evaluate the r ight-hand side of (2.33) using 

SI,  I ( x )  
_ _  ( 

2g k = 1 4gk2(k + 1 ) 

where z = e -2g [a ~b. Define 

(2.34) 

B k, T =  Fl(z) 
k = l  

k=lB k, ~ = F 2 ( z  ) 

k = 1 B k, ~'5 = F3 (z )  

(2,35a) 

(2.35b) 

(2.35c) 

Then 

Fl(Z ) -I- F l (1)  -- Fz(Z) -- F2(1) + F3(1) - F3(z) 
Sl.l(Z) - 2 (2.36) 

The functions Fi(z) are determined in Appendix  A. In part icular,  at equal  
times (a = ~) we have 

37~ 2 
$1,1(1) = ~ - -  7 

Thus 

~Xl(O" ) Xl( 'C))eq  = (2g) 1 e gl~ ~I[-L2(1 + g I~-~1)-q2Sl, l(e 2gla tl)] 
(2.37) 

and 

1 3~2 7) 
~Xl(T))e2q = ~g  ( L2 -1- T - -  
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Next we consider 

f f/ ( X o ( Z ) x 2 ( a ) ) = - g e  g(~+~) dt dse g(t+s) 
o 0 

x ( f ( t ){ZXl(S)  + x l ( s ) in  xZ(s) + �89 xZ(s)] 2 } ) 

- (Xo(Z)x2(~r)),+ (Xo(Z)x2(~r))b+ (Xo(r)x2(a))~ (2.38) 

First consider the "a" term in Eq. (2.38): 

( X o ( Z ) x 2 ( a ) ) a = - 2 g e  g(~+~) dt d se gr  (2.39) 

Rewriting the logarithmic terms in xl(s)  using (2.10), we obtain 

(Xo(Z) x2(a))a = 2g2e -g(~+~ t e gt ds 

i = l  0~=0 

(2.40) 

Making use of (2.16) and (2.17), we perform the integrals over zi and t to 
obtain, in the equilibrated limit, 

d ((2~ + 1)!!'~ 
(Xo('C)X2(ff))a'eq=2ge g('~+~)'-~\ -~ /1~=0 

x ds dr [e2g~O(r - z) + e2grO(z - r)] 

Performing the remaining two integrals, we have 

L 
( X o ( T J ) X 2 ( O ' ) ) a ,  eq = - - e  gl,, ~1[1 + 2 g O ( a - z ) ( [ a - z [  + g  l a - z [ 2 ) ]  

g 

(2.41) 

SO 

L 
(Xo(.C) x2(o.)) + (Xo(~r) X2(.C))a, eq=__e--gla--~l( 1 +g  iO. Z [ +82 ]6 .el 2) 

g 
(2.42) 

and 
2 ( X o ( O ' )  X 2 ( a )  ) a,eq = L/g 
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Next we consider the "b" term in Eq. (2.38): 

(Xo(Z) x2(a))b = --ge -g(~+,) dt ds eg(t+')(f(t) Xl(S ) In x2(s)) (2.43) 

Again rewriting the logarithmic term using (2.10), we have 

(Xo(Z)x2(~r))b=g2e g(~+~l dt dse gt dr 

x ct ~ct= { e- Zg<s~ +r~l l f (  t ) iFIl l fo dzi egZf(z+) ] 

x ]-[ dy/egYJf(yj) (2.44) 
j = l  =/~=o 

Taking the expectation value and using the fact that f obeys Gaussian 
statistics leads to two different types of terms. First, referring to Fig. 3a, 
f(t) can be contracted with any one of thef(zi), leaving 2c~- 1 factors f(z+). 
Then, 2k+ 1 pairwise contractions of the form (f(y/)f(z~)) are done, 

z 

f(t) Z2ct 

Y2 

z3  "~//~, Y3 (a) 

Y213+ 1 

c~-k- 1 2k+1 lines ,~-k 
z- loops y - loops 

2 k lines 

<z-k ~-k  
z- loops y - loops 

Fig. 3. Graphical representation of (2.47). 
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leaving 2 ~ -  2 k -  2 pairwise contractions of the remaining f(zi) and 2fl- 2k 
pairwise contractions of the f(yi). This type of term is illustrated in Fig. 3b 
and has a statistical weight given by Flk(c~, fl), where 

(2~ -  ll ) (2k + l )! (2fl + ll ) (2~- 2k -  3 )!, (2fl- 2k-1)!! Fl~(c~, fl) = 2ct 2k + 2k + 

(2.45) 

Alternatively, f(t) can be contracted with one of the f(y,), leaving 2fl 
factors f(Yi). Then 2k pairwise contractions of the form ( f(yi) f (z i))  are 
done, leaving 2 ~ - 2 k  pairwise contractions of the f(zi) and 2fl-2k 
pairwise contractions of the f(Yi). This type of term is illustrated in Fig. 3e 
and has a statistical weight given by Fek(a, fl), where 

(2 f l ) (2k) , (2~)(2c~-2k-1)"  ( 2 f l - e k -  l ) "  F2k(c~, fl) = (2fl + l) 2k 2k . . . .  

(2.46) 

We therefore can write 

f od tCgt t f ( t )  iOl[fod2iegzf(z i)12f l~I ' I fodyjegYf(yj)])  
j = l  

_-- ~ Flk(~, fl) I3(Z ' s)[i2(r)je-~ [-i3(r ' S ) ' ] 2 k + l  [-i2(s)']~ k 1 
k = 0  

q_ ~ F2k(0~ ' fl) i3(r ' r)[12(r)]fl-l~ [i3(r, s)]2k [12(S)]~ k (2.47) 
k = 0  

where 12 and I3 are defined in (2.18) and (2.28). Using the leading 
contribution to I2 and 13 relevant in the equilibrated limit, we obtain 

(Xo(z) x2(~r) )b, eq = g e-g(~+T) ds dr 

x f  ~ R z - s )  e-2g'% 2grl~+l) 
v k = O  

q- O(S -- "~) e2gre 2gs(k + l)e2gr(k + 1)]  

+ ~ R2k[O('~ -- r) e-2gske 2gr(k+ 1) 
k = 0  

+ O(r-  z) e2g*e-2gske2grk]; 
J 
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where 

R i k = 0 ~  g~+~---y- =~=o 

Performing the integrals, we obtain 

(2.48) 

(Xo(~) Xa(a) )~ 

= l e  g l ~ - ~ l [ l §  ~ + R , , k _ o  
4g k 1 

1 
+~ge gl~ +O(~r-r)[2g Icr--~l +2g 2 la-~]2]} R2, k 0 

+~--~ge g ]a-rl  R2 k -.[-O(a--'~) 
k = l  

x l a - r l +  k2(k+ 1 ~ 

Symmetrizing with respect to a and r yields 

<Xo("g ) X2(O" ) "}-Xo(O" ) X2(T) )b, eq 

=--e-XU~-~l(1 + g ra-r l )  ~ - ~ +  R~,k=o 
2g k 1 

+~ge gl~-~l(l+glcr-rl+ g2[cr-rl2) R2,k=o 

+ 1 e gl'*~gg ~l Lk =1R2k( 1 ~  + g la-- z l ~  + e2gkl~ k + 1) (2.49) 

Using (2.45), (2.46), and (2.48), 

Rl,k=O = 2L 

R2,k_O = L2--2L 

(2.50a) 

(2.50b) 

and, for k >/1, 

R'k= -22* + ~ B( l + k' l + -2B(k ,~)  

4 k ( l + 2 k ) B ( l + k , l + k )  4kB(k,k) 
R2k = k2 2k 

B(k, 1/2) 
k 

(2.5Oc) 

(2.50d) 
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To do the sums in (2.49), it is useful to define the functions 

Ho(z )= ~ B(k,k) z k, 
k = l  

H2(z) : k= ~ B(k, k) ---~,k + 

Z k 

H4(z ) = ~, B(k, k) -~ 
k = l  

= ~9 R~L - 4 k B ( l + k ,  l + k )  
A k~=~= k + l  - 2 k = ~  k(k+l)  

z_, 
Hi(z)= ~ B(k,k) k 

k = l  

Z k 

H3(z)= ~. B(k, k )~  i 
k ~ l  

(2.51) 

7"g 2 

- - - - 6  
2 

In Appendix A we perform the sums over k in A and in the Hi(z). 
In terms of the Hi(z), 

R2k H~(4) H2(4) rc 2 
- 1 

k = l k + l  2 2 4 

~ R2k H3(4)-2.63389... 
k=l k 2 

e 2gk Io- - -T]  _ _  1 

k=lR2k 2kZ(k+ 1) =-S~ ~l) (2.52) 

1 
= 4 [H4(4e-2g/~ -~1) _ H4(4 ) _ H3(4 e -2g Io ~1) 

+ H3(4) + Hl(4e 2g Io--- r [ )  __  H1(4 ) 

_ H2(4 e 2g I,~-~l) + H2(4)] 

So,2(1)=0 

Then Eq. (2.49) gives 

(Xoe) x~(~) + Xo(~) x2(~))b,o. 

=(2g)  le-gl'~ rL _ 7 + L Z + g l a _ r ]  _6+L2+___5__ j 

+ g2 ia _ z12 (L 2 _ 2L) + So,2(e -2g t~ ~l)} (2.53a) 

1 (_~_.~_ +Z2) (2.53b) 2(Xo(~) Xz(Z)> = ~g 7 
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Next we calculate the term (Xo(a)X2(T))e, eq in Eq. (2.38): 

le--g(a--r);O f: (Xo(a) x2(r))c = - ~  dt ds e g(' +')(f(s) Xo(t) ln2[xo2(t)] ) 

(2.54) 

Using (2.10), 

le-g(a ~) dt dseg(t+s) e (2c~+l)gt (Xo(a) x2(~) )c = --~ cl~2 

x (s) dz i egZf(zi) (2.55) 
i= c~=0 

The integrals above were performed earlier in the paper [see (2.15)ff.] so 

1 
(Xo(~r) x2(r))c, eq = - 4g ge-g I~-~p[ 1 + 2gO(r - a) It - at ] 

d 2 F(~ + 3/21q t 

- 4gl e - g l ~  

(2.56) 

where 0 ' (3 /2 )=  ~2/ (2) -4 .  Symmetrizing (2.56) gives 

(X0(0") X2(T ) ~- X0('6" ) X2(O'))c, eq 

Combining the three terms in Eqs. (2.38), (2.42), (2.49), and (2.57), we 
obtain the equilibrated two-point correlation function to order 32 , 

1 { 
G~q(a, r )=~gge -g/" ~J 2-2c5L(1 + g I o - ~ l )  

+ 6  [L2(1 + g I~r-~1 + g2 I~_~12) 

+ (2L - 2)(1 + g / o - -  ~1) 

+ (~---4-1) + g ~ -  H3(4) + Sn(z) + Soz(Z)l} (2.58) 
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where z = e 2g ]c~ rl. When 
3g 2 

o '=r ,  SII(1) = - ~ - -  7, 

and 

So2( 1 ) = 0 

G~q(cr~)=l {1-6L+62(L~2 + L + 6 ' ( ~ ) - l ) }  (2.59) 

3. A N A L Y T I C  C O N T I N U A T I O N  IN 6 

In order to explore the nonlinear regime, one needs to analytically 
continue the 6 series outside its radius of convergence. One effective way of 
doing this is by means of Pad6 approximants341 The equal-time correlation 
functions are known analytically for all 6 from (1.12) and for these one can 
exactly test the domain of validity of the Pad6 approximants. For the 
unequal-time correlation functions one has to rely on a comparison with 
the numerical solution of the Langevin equation. 

First consider the equal-time correlation functions. From the time- 
independent solution of the Fokker-Planck equation (1.10) we have 

S ~  dx x n exp[-gx2~l +a~/(2 + 26)] 
<xn)cq = S ~  dx e x p [ - g x  2(1 +67/(2 + 26)3 

Thus the equal-time correlation function, exact to all orders in 6, is 

(3.1) 

The first three terms in the Taylor series in 6 of Eq. (3.2) are 

G 2 ( t , t ) = l g { l - 6 L + 6 2 [ - l + L + ~ L 2 q - t l / ' ( ~ ) ] q  - -..} (3.3) 

where L = ln(2/g) + 6(3/2). 
This agrees precisely with Eq. (2.59), obtained by solving the Langevin 

equation in the 6 expansion. 
Note that Eq. (3.2) has an essential singularity at 6 = 1, so the Taylor 

series (3.3) has radius of convergence 1. 
To analytically continue the approximate result (2.59) to large 6, we 

form the [ 1, 1 ] Pad6 approximant, which agrees with this Taylor series up 
to 62: 

2L + (26'(3/2) - L 2 + 2L - 2)6 
GEzl'I~(I, t)= g 1 (3.4) 

2L + (26'(3/2) + L 2 + 2L - 2)6 

+  32, 
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One immediate drawback of this Pad6 approximant  is that at small g and 
at large g, Eq. (3.4) behaves like l/g, whereas the exact answer, Eq. (3.2), 
behaves like ( l /g)  1/c1+~). In Section4 we will show how to remedy this 
problem. In Fig. 4 we compare the exact answer at g = 1, as a function of 
5, with the [1, 1 ] Pad& We notice the excellent agreement from 5 = 0 to 
6 = 5. (The error at 5 = 5 is approximately 6 %, even though this point is 
far outside the radius of convergence of the 6 expansion.) 

In Fig. 5 we compare the exact answer for 5 =  1 as a function of g with 
the [1, 1] Pad& Although the square-root singularity at g = 0  is not 
correctly obtained, for g > 1/2 the agreement is excellent. 

At g = 2 the term ln(2/g) vanishes. Very near this point the numerator  
and denominator  of the Pad6 approximant (3.4) each have zeros. The 
failure of these zeros to coincide produces the rapid oscillation near g = 2 
shown in Fig. 5. 

If we had included a linear term in W(x) ,  i.e., a mass term in the quan- 
tum mechanics problem, so that W ( x ) =  m x  + gx  ~+ 1, then the calculation 
of the 5 expansion would have been almost identical to the preceding one, 

g=l 

G 2 (t,t) 

1.0 

0,8 

0.6 

0.4 

, , ,  [ . . . .  [ j 1 1 , 1 , 1 ,  , 1 1  i , k  

i l l  [ r r  , l [  l l , , I n r  , I  I , I r  
1 2 3 4 

Fig. 4. Comparison, as a function of 3 at fixed g = 1, of the exact equal-time correlation 
function given by (3.2) with tile [I, 1] Pad6 approximant (3.4), obtained from the 5 
expansion through order 6 2 . 
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8=1 

1,5 

1 
G2(t,t) 

0.5 

-0.5 

Fig. 5. 

I 
4 

I I I 
6 8 10 

Comparison of (3.2) and (3.4) for fixed 6 = 1 as a function of g. 

but  with g replaced by m + g as discussed below (2.3). This would have 
allowed a weak coupling expansion in g. Tha t  is, for m not zero, 

<x 2 )oq = ~ dx x2~(x) 
~% dx ~(x) 

where 

F (rex2 gx2( 1 + c5)~7 

P(x)  = exp L - 

The 6 expansion of P (x )  is 

(3.5) 

6 
P ( x ) = e  (m+g)~2/2 1 - - ~ ( 2 g x 2 1 n x - - g x  2) (3.6) 

-k- ~- E (4g 2x4 - 8g x2 ) In 2 x + (8gx 2 - 4g2x 4 ) In x + g2x4 - 4gx  2 ] + . . .  

by 

The integrals involved are all s t ra ightforward and can be summar ized  

�9 

J(n)  =- dx  x2ne -(m+g)x2/2 = (3.7a) 
F(1/2)  

io~ dx  ln xxZ,,e (m + g)x2/2 1 = -~ J (n)  L ( n )  (3.7b) 
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where L(n) = r + 1/2) + ln[2/(m + g)]; and 

ff dx in 2 xx2ne (m +g~x2/2 = ~ J(n) L2(n) (3.7c) 

where L2(n) = r + 1/2) + LZ(n). 
To improve the accuracy of the ~ expansion, we again use Pad6 

approximants. To avoid the kind of oscillation seen in Fig. 5, in this case 
at ln[-2/(m+ g)] =0,  we use (3.6) to obtain separate c5 expansions of the 
numerator and denominator of (3.5). We then take the ratio of the [1, 1] 
Pad6 approximants. The result, shown in Fig. 6, is accurate to 15 % for all 
g e  [0, 53. 

In Appendix B we discuss how well weak and strong coupling expan- 
sions work with and without Pad6 approximants. 

Next, let us turn our attention to the unequal-time correlation func- 
tion given in Eq. (2.58). To evaluate this, we approximate Sll(z)  and So2(Z) 
by summing one million terms (10,000 would be sufficient) in the series 
representation for these functions given in Eqs. (2.34) and (2.52) and 
making a table of values for the interval [-0, 1]. We then compare the 
[1, 1] Pad6 approximant obtained from Eq. (2.58) as well as the naive 
result of the order 6 and order 62 calculation with a numerical simulation 
of the Langevin equation (1.2) where the stirring forces obey Gaussian 
statistics described by (t.3). For the values g =  1 and ~--1 we plot the 
results of this comparison in Fig. 7. The two lines for the Langevin simula- 
tion reflect one standard deviation about the average taken over a large 
number of independent simulations. We notice that at ~--1, which is the 

Fig. 6. 

1.0 

.9 

.8 
G2(t, t)  

.7 

.6 

.5 

.4 

.3 

.2 

m = 8  = 1  

, ~ ;  lW[l'q0 

/ ~  "Q,~, 8 e x p a n s i o n  

exac, \ ~ '  

I I I [ I I I I I J 

0 3.0 g 5 

Comparison of the exact result for ( x  2) from (3.5) for m = 6 = l  with the 
approximate result obtained as a ratio of [1, 1 ] Pad6 approximants. 
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I I I I ) I  I I I i I I I I I I I I I g = 5 = 1  I'''' 
1 

Q u a d r a t i c  . . . . . . . . . .  - - - -  

A 

.2 " '~  

' ,  L i n e a r  

.1 = L I ~',1 r K t i I i K i I I I I = i i I i I p 
- 0  .2  . 4  .6  .8  

Fig. 7. Evaluation of the correlation function (x(~)x(0)) for g=6 = 1. Langevin denotes 
the numerical solution including error bars. Pad6 denotes the [ 1, 1 ] Pad6 of the 5 expansion 
equation (2.58) up to order 62. 

radius of convergence of the delta expansion for t = 0 ,  the linear and 
quadratic approximations are quite poor, but the [ 1, 1 ] Pad6 approximant 
obtained from the quadratic approximation gives excellent agreement over 
the entire range of t plotted. Thus, the analytically continued 5 expansion 
is quite accurate after only calculating to order 62. 

4 .  I M P R O V I N G  T H E  A N A L Y T I C  S T R U C T U R E  I N  g 

B Y  U S I N G  S C A L I N G  L A W S  

Notice that the expansion (3.3) has an analytic structure in g that is 
totally different from the exact expression (3.2). Except at 6 = 0, (3.2) has 
a branch point at g = 0  associated with the power 1/(1 + 6). In contrast, 
(3.3) has a single pole at g = 0  plus logarithmic branch points. The Pad6 
approximants cannot remedy this. On the other hand, as known from 
mean field theory, a self-consistent answer does reproduce the correct 
analytic structure at g = 0. So we might ask, is there a way of introducing 
a new parameter  into the theory so as to force the correct analytic structure 
at g = 07 We do this by exploiting the freedom to make engineering scaling 
changes on the units used to measure the variable x. A complete discussion 
of this idea will be published elsewhere. Here we will confine ourselves to 
the explicit calculation of the equal-time correlation function G2. 
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To force the series (3.3) in 6 to have the correct analytic structure in 
g, one introduces two new parameters M and b as follows: 

(X 2 ) -- y X 2 exp[ - g M b ( x / M )  2 + 26/(2 + 26)] dx 

- y exp[ -gMe(x/M)2+2a/ (2  + 23)] dx 

The exact value of (X 2) is 

<X2> = M2 (2  + 26) 2/(2 +a' F(3/(2+26)) 
/'(1/(2 + 26)) 

(4.1) 

We notice that when b = 2 + 26, ( x  2) is independent of M. (Also note 
that g now has different dimensions than before.) Thus, 

d(X2)dM b= 2 +2a = 0  (4.3) 

We realize that if we let x => 2x in Eq. (4.1), then dimensional analysis 
implies 

{X2)(2dgg, ){SM) = ,~2{x2)(g, M) (4.4) 

where the dimension of the parameter M is s and the dimension of g is thus 
[from Eq. (4.1)] dg = - s b  + (s - 1)(2 + 23). Differentiating with respect to 
2 and then setting 2 = 1, we obtain 

(~ 2) (X 2)(g, M) = 0 (4.5) ( s M ~ + d g g ~ g -  

This equation should not depend on the dimension of M. Differentiating 
with respect to s, one obtains 

M ~ - ~ + ( 2 + 2 6 - b )  ~gg ( x 2 ) ( g , M ) = O  (4.6) 

which implies M c~/OM= 0 at b = 2 + 26, which is (4.3). 
We can write (4.2) as 

{ X  2 ) ~- M2f(y ,  6) (4.7) 

where the generic structure o f f  is 

f ( y ,  6) = yh(a)g(3) = e h(a) Inyg(6) (4.8) 

and 
y = g M  b, h = -1 / (6  + 1) (4.9) 

(4.2) 
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The scaling condition (4.3) can be written as 

E2f(y) + y b f ' ( y ) ~  I b = =-- 2~ = o (4.10) 

This equation is an identity if we use the exact equation for f ( y )  or its 
expansion to all orders in 6. However, if we calculate only to order 6 N, we 
have 

N 

fN(y)= ~ an(y) 3n/n! (4.11) 
n = 0  

and fu(Y) is not independent of M. 
The scaling condition then leads to the relationship 

bu(y)=daN(y)/dy=O (4.12) 

which allows us to choose a particular M so that (4.3) can be satisfied. 
Clearly bu(y ) is a polynomial of degree N in ln(y). Equation (4.12) 

has N real roots, but only the smallest root is related to the N =  1 solution. 
We denote this root by y*.  

The sequence of y*,  for N = 1, 2 ..... 8, is 

5.63861, 3.56103, 2.95104, 2.66687, 

2.50419, 2.39919, 2.32591, 2.28717 .... (4.13) 

This sequence of numbers can be fit by 

1.8916 + 2.9086/N + 0.839096/N 2 (4.14) 

Now, y*  = gM b. Solving for M as a function of y*(N) and b, we obtain for 
the Nth-order improved calculation: 

(X2)N=[Y'~--~]2/bfN(y~v) (4.15) 

w h e r e f i s  defined in (4.11). 
We notice that if we now set b =  2 + 26, we automatically get the 

correct analytic behavior as a function of g. The next thing to note is that 

F(3/(2 + 26)) 

F(1/(2 + 26)) 

is finite as 6 ~ oo. Thus, in trying to extrapolate to large 6 using Pad6 
approximants, one should use diagonal Pad6 approximants which also 
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have the property of beging finite as 6 ~ oo. So the strategy is to calculate 
to order 6 u and to solve the scaling condition for y*.  One then forms the 
[N/2, N/2] Pad6 approximant of this answer. Only at the end does one set 
b = 2 6 + 2 .  

To order 6 we have 

1 y* : ~ e x p [ -  (TE -- 3)] (4.16) 

where 7E is Euler's constant, 7E ~ 0.57 .... 
Inserting this in the expansion of the answer up to order 6, one 

obtains as the lowest order result 

= (26 + 2){ (2g) -1 e x p [ -  (TE-  3)] }1/(6+ 1/ (4.17) X 2 > N = I  

At 6 = 1 this yields 

( 0 ' 8 ~ 2 5 5 )  m 

as opposed to the exact answer 

( 0 . 6 ~ 9 7 7 )  1/2 

As expected, this approximation has the correct analytic behavior in g 
and the coeficient is accurate to 10 %. 

To order 62 , we obtain instead 

y* = �89 exp[4 - 7E -- (12 - 7 1 2 ) 1 / 2 ]  (4.18) 

Inserting this value of y* into the [1, 1] Pad6 approximant of the Taylor 
series in 6 of (x2 ) ,  we obtain 

exp{ [6/(6 + 1)](7E--4 + ~ ) }  [4- -2  ~ +  6(30 -- 6 ~ ) ]  

(2g)1/(~ + 1 ) [ ( % f  _ 7[2 _ 1)(~ J- 2 - -  ~ ]  

(4.19) 

Again we obtain the correct analytic behavior in g and the ratio of (4.19) 
to the exact answer (4.2) is a monotonic function of 6, denoted by R1, 
having a value 1 at 6 = 0  and 1.37779 as 6 ~ oo. At 6 =  1 the ratio is 
1.0128 .... showing a great improvement over just doing the calculation up 
to order 6. The ratio of the improved [ 1, 1] Pad6 as compared to the exact 
answer for all 6 is shown in Fig. 8. As one keeps higher and higher terms 
in the (5 expansion the ratio of the improved Pad6 approximants to the 
exact answer gets better and better. 

822/64/1-2-27 
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Fig. 8. 
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The ratio R 1 of the scaling-improved El, 1] Pad~ approximant to the exact answer 
for (xZ), as a function of & 

In general, in order to obtain the scaling-relation improved 
approximat ion to the answer, we first keep N terms in the 6 expansion 
(where N is even): 

N 
M 2 6" (x2)u= ~ a,(y) (4.20) 

n=O 

We next form the IN/2,  N/2] Pad6 approximant  for that  Taylor  
series: 

MzP[N/2, N/2 ](y) = M 2 z.,,=o ,~yJ 
ZJv/2 cn(y ) 6n rt=0 

(4.21) 

We then evaluate this at y =  y * =  g m  2+26 to  obtain 

(XZ)u,y~v = (y* /g)~/(' +~) PIN~Z, N/2 ](y*) (4.22) 

So that  we can compare  this answer to the exact answer, we form the 
ratio 

<X2 ) N, y~r 

RN/2(6)-- (x2) (4.23) 

We plot in Fig. 9 the ratios R2 and R 3. By the time we get to  R 3 the 
ratio is only 6 % high at ~ -- co. At 6 = 1 we obtain 

R2(6 = 1 ) =  1.000170696 

R3(6 = 1 ) =  1.0000039263 

(4.24) 

(4.25) 
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Fig. 9. The ratios R 2 and R 3 of the scaling-improved [2, 2] and E3, 3] Pad6 approximants 
to the exact answer for {x2), as a function of 5. 

Thus, we see that the naive 6 expansion series, when improved by 
using Pad6 approximants which are evaluated at y*, the value given by the 
scaling relation, gives an approximation to the exact answer that has the 
exact functional dependence on the coupling constant g and gives a 
uniform approximation for all 5 when N is sufficiently large. 

A P P E N D I X  A. 

Consider 

If we let 

S U M M I N G  T H E  SERIES 

$1,1= B k ,~  2k2(k+11 
k = l  

k=l B k, - -~=Fl(x)  

k : ,  . ~ = g 2 ( x )  

B k, -kS = g , ( x )  
k = l  

(A1) 

(A2) 
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then we can write 

Fl(x)  + FI(1) - F 2 ( x )  - F 2 ( 1 )  + F 3 ( 1  ) - F3(x) 
$1'1 = 2 (A3) 

Using the integral representation for the beta function, we have 

xdFl=dx B k , ~  x 
k ~ l  

= x k dt t k -  1(1 - -  t) ~/2 
k=l 

1 
= X f o  d t ( 1 - x t )  1(1-t)1/2 

= 2 - 2  a r c t a n L \ l _ x j  j (A4) 

Thus we obtain 

( ~ " ~  t 1/'2 Fl(x)  = 2(arcsin x/x) 2 + 4 arcsin xfx - 4 

| g2 F , ( 1 ) = 3 - ~  

(A5) 

Using 

d dF~ 
dx [xFz(x)]  = x dx 

and integrating, we obtain 

F2(x) = 3 (arcsin x/x)2_ 2 arcsin 
X 

1 ~2 
F2(1) = 3 - ~  

(A6) 

Finally, 

x dF 3 
- -  = FI(x)  

dx 
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so that 

F3(x) = 8 - 4(arcsin ,,fx) 2 8 (1 x ~ X )  1/2 
- arcsin xfs  + 4I,(arcsin x/7) 

where 

II(y) = ;o  z2 cot(z) dz (A7) 

One can either use the integral as the definition of Ii(y) or rewrite it in 
terms of the logarithmic integral functions li2(y) and li3(y), 

I~(y)=-2iY---3 + y2(i~r+ln2)+iyli2(e 2iX)--li3(e-2ix) (A8) 

where 

We notice that 

Next consider the sums 

oe zk  

lin(x) = k7~1 

3~ 2 
SI , I (T=  0) = - ~ - - -  7 (A9) 

A= ~ Rlk 2 ~ 4kB(l+k'l+k) 
k=~ k + l  x=~ k ( k +  1) (a l0)  

Using B(1 +k ,  1 + k )  = ~  dt tk(1 - t) k, we obtain 

1 
A =2 fo dt [ I n ( I - x ) -  1 - x  -1 l n ( 1 - x ) ]  (Al l )  

where x = 4t(1 - t). After two subsequent changes of variables, t = sin 2 O, 
and then y = cos 20, we obtain 

1 
A = - 2 - 4  fo dy In yy2(1 - y2)-1 (A12) 

Expanding the denominator, integrating term by term, and summing, we 
obtain 

A = - 2 - 4  1 -  ~ ( 2 ) = ~ - - 6  (A13) 
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Next we need the functions 

~o(X) = ~ B(k, k) x k, 
k=l 

g2(x) = e(k, k) 
k=l k + l '  

X k 
H4(X ) = ~ B(k ,  k)  k-- ~ 

k=l 

X k 
Hl(X ) = ~ B(k,  k)  -s 

k=l 

X k 
H3(x) = ~ e(k, k) 

k=l 
(A14) 

Using the integral representation for B(k, k), we have that 

Hl(X ) = - 2  ~1/2 dy ( y -  y2)- l ln[1 - x ( y -  y2)] 
"~0 

(A15) 

Changing variables via 

Z 2 y _  y 2 = _ _  4 
we obtain 

H~(x) = - 4  dzz - l (1 - z2 ) - l / 21n  1 - x  

= [ ~ -  2 arccos (~ x /~ ) ]  2 

H1(4) = ~ 2 

(A16) 

Using 

dill(x) 
x =H(x) 

dx 

we obtain 

( x  "]l/212~_4arccos(~/~)l Ho(x) = \ ~ - x J  (AI7) 

From 

d 
dx [xHz(x) ] = Ho(x) 
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we obtain, after integrating, 

H2(x) = 2 + - -  - 2 ,,4_x,aJ2x-lJ2_,_4,4_x,lJ2x-JJ2arccos(  ) 
X 

SO 

+16arctan[(4-x)l/2x-l/2]arcc~ 

_(8) arctan2[(4_x)l/2 x 1/2] 

-(8-if) arctan[(4-x)mx -~/2] 
9 

/-/2(4) = ~ + 2 
2 

For H3(x) we have 

dH3 
x --d-f-x = H1 

(A18) 

f~ dY I n -  2 arccos (~ ~ ) ]  2 (A19) Ha(x) =~o 7- 

This cannot be evaluated in terms of special functions and must be 
evaluated numerically. Similarly, 

H4(x)= fo~-~ H3(y) (A20) 

A P P E N D I X  B. C O M P A R I S O N  WITH OTHER E X P A N S I O N S  

It is instructive to compare the calculation with three terms in the 
expansion to the calculation using many terms in the weak and strong 
coupling expansions. The simplest place to make the comparison is for the 
equal-time correlation functions because we can obtain these expansions 
directly from the integral (1.12), 

(X2)eq  S ~ ~176 dx X2tl~(X) /I~(X ) [ - - rE/X2 g x  2(1 +6) ] 
= y__%&~(X) ' =exPI_---T--+ Yg-YgJ (B1) 
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Fig. 10. Comparison of the first five terms in the weak coupling expansion (B.3) to the exact 
evaluation of <x2> in (3.5), for m=6=  1. 

The weak coupling expansion for this is obtained by using the 
Gaussian part as the measure and expanding in powers of g about that. 
That is, we write 

P(x) = e--mx2/2 (B2) 
n = O Ill] 

Performing the integrals, we obtain 

<x2> =--2 Z ~ [  -g / (2  + 26)]" F(n + an + 3/2)(2/m)'+a"/n! 
m Y ,~E-g / (2  + 26)]" F(n + an + 1/2)(2/m)'+a"/n! 

(B3) 

The weak coupling expansion is then obtained by reexpanding this 
expression as a power series in g starting with gO. The weak coupling 
expansion is of course an asymptotic series. 

The result of keeping five terms in the weak coupling expansion is 
compared in Fig. 10 with the exact numerical evaluation of (3.5). We notice 
that the weak coupling expansion breaks down at very small values of g. 
Taking a Pad~ approximant does not improve this result, as the 
denominators have poles at small values of g preventing an effective 
analytic continuation to large g. 

For the integral (3.5) one can also perform a strong coupling expan- 
sion by treating the Gaussian part as a perturbation. That is, we write 

[ -gX2+28]  L (--mx2/2)" (B4) 
P(x) -- exp 2 + 26 n! 

rt=O 
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Fig. 11. The [5, 5] Pad6 approximant of the strong coupling expansion (B.5) compared to 
the exact evaluation of (x 2) in (3.5), for m = 5 = 1. 

Performing the integrals, we now obtain 

~]n~__ o(--m2/2) n [(2 + 26)/g3 n/u+ ~) F((2n + 3)/(2 + 26))/n! 
x52,~0(-m2/2)"  [(2 + 25)/g]"/(~+a) F((Zn+ 1)/(2+25))/n! (B5) 

Reexpanding this in terms of powers of (1/g) 1/(~+a~, one obtains the 
strong coupling expansion. This expansion is convergent. Pad6 
approximants to the strong coupling expansion are a very accurate 
representation of the answer except for quite small g, as seen in Fig. 11. 
Unlike the weak coupling expansion and the 5 expansion, the strong 
coupling expansion exists only for zero-dimensional field theory (ordinary 
integrals as opposed to functional integrals). For dimensions greater than 
zero the strong coupling expansion must be regulated, for example, by 
introducing a lattice, because it is a singular perturbation theory in 
derivative terms. Thus, in higher dimensions the strong coupling expansion 
introduces a new parameter (the cutoff or lattice spacing) into the theory, 
which is present even after mass and coupling constant renormalizations. (9) 
In particular, a strong coupling expansion for the correlation functions 
(1.7) does not exist in the continuum. The lattice-regulated strong coupling 
expansion for the path integral (1.7) is discussed in ref. 6. On the other 
hand, the 5 expansion, after being analytically continued using Pad6 
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approximants, works uniformly in both weak and strong coupling regimes 
and does not require the introduction of a lattice regulator in higher 
dimensions. 
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